Harvard数学专业的研究领域
-
Symplectic geometry(辛几何)
Dynamical systems, arithmetic geometry, and complex analysis(动力系统、算数几何、复杂分析)
Number theory, computation, classical algebraic geometry(数论、计算、古典代数几何)
Geometry, topology, and interactions with theoretical physics(几何、拓扑以及理论物理的相互作用)
Algebraic geometry(代数几何)
Number theory and arithmetic geometry(数论与算数几何)
Topology, differential and algebraic geometry, and their applications(拓扑、微分与代数几何,及其应用。
Game theory, contract theory, social choice theory, political economy(博弈论、契约论、社会选择论和政治经济学)
Number theory, automorphic forms and related issues in algebraic geometry数论、代数几何中的自守形式及其相关问题)
Riemann surfaces, complex dynamics, hyperbolic geometry(黎曼曲面、复杂动力学、双曲几何)
Mathematical biology, evolutionary dynamics, infectious diseases, cancer genetics, game theory, language(数学生物学、进化动力学、传染病、癌症遗传学、博弈论、语言)
Several complex variables(几个复杂变量)
Nonlinear partial differential equations and applications to topology, geometry, and mathematical physics(非线性偏微分方程及其在拓扑学、几何和数学物理中的应用)
Algebraic and geometric combinatorics(代数和几何组合学)
Number Theory and Arithmetic Geometry(数论和算数几何)
Set theory, determinacy, and strong axioms of infinity(集合论、确定性和强无穷公理)
Probability theory, quantum dynamics, differential equations, and nonequilibrium physics(概率论、量子动力学、微分方程、和非平衡物理)
参考来源:哈佛大学文理学院数学系高级教员列表